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We have obtained extrapolation formulas  for calculating the tempera tures ,  t empera ture  
gradients,  and heat fluxes in a solid heated by a varying thermal  flux f rom the resul ts  of 
t empera tu re  measurements  at two points. The applicability l imits  and e r r o r s  of the pro-  
posed formulas  have been investigated. 

In investigating nonsteady-s ta te  thermal  conductivity in a solid, it is often necessa ry  to determine 
the t empera tu re  field f rom the resu l t s  obtained in measur ing  the tempera tures  at a limited number of 
points. 

The problem of reconst ruct ion of the tempera ture  at the boundary of a solid f rom the experimental ly 
determined tempera tures  measured  at two points within it were considered by Tikhonov and Glasko [1]. An 
algor i thm for determinat ion of the boundary tempera ture  was devised on the basis  of solution of the f i rs t  
boundary problem for thermal  conductivity, as incor rec t ly  formulated by the regular izat ion method [2]. 

We previously [3] gave a nonlinear extrapolation function that can be used to calculate the surface  
tempera ture  of a body during heating at the boundary with a constant heat flux. 

However, the possibili ty of t empera tu re  recons t ruc t ion  f rom a minimum number of experimental  
data over a b roader  range of var ia t ion in the coordinate and time was not investigated. This is a press ing 
problem for cer ta in  a reas  of thermoelas t ic i ty ,  thermometry ,  and thermophysical  measurement .  

In many cases,  the action of external  energy on a body is such as to lead to a monotonic change in 
the heat flux passing through the body sur face  with time. 

We will consider  the heating of a semibounded homogeneous body, whose thermophysical  pa ram-  
e ters  a re  independent of the tempera ture ,  by a heat flux that var ies  with t ime by the rule q(~-) = q0 + bT, 
where q0 = const and b > 0. Since we assume that the heating process  is not accompanied by phase t r ans i -  
tions or  chemical  react ions ,  the problem reduces  to integration of the Four ie r  equation. 

An exact solution to the problem is easi ly obtained on the basis of the Duhamel theorem, since the 
expression for the tempera ture  in a solid with a constant heat flux at its boundary is well known [4]: 

(x, T)= V ~  2ierfc 2 / ~ 4 - 8  b ~  i3erfc x ~  \ 
' qo 2 ~/aT 

However, the relationship obtained is inconvenient for extrapolation of the temperature beyond the mea- 

surement points. We will construct an approximate expression for the temperature profile in the heated 

body. The initial thermal conductivity equation is written in the form 

L (0) = a v " 0  -- -- = 0. (2) 
OT 

W We use the concept of the depth of penetration of the heated zone 5(~), as was done in other studies s 
[5, 6]. The boundary conditions of the problem then take the fo rm 

_ ~ o~ (0, ~) a~ (~ (~), ~) --qo ~-bT; = 0; ~%(6(*), T ) = 0 ;  6 (x ,  0)----0. (3) 
8x 8x 
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The K a n t o r o v i c h  me thod ,  in combina t i on  with the m o m e n t  me thod  [7, 8], is  used  to i n t e g r a t e  Eq. (2) 
with the  condi t ions  in Eq. (3). An a p p r o x i m a t e  solut ion,  taking into accoun t  the null in i t ia l  condi t ions ,  is  

sought  in the  f o r m  

(x, ~) = ~ m (~) ~ (x, ~), 6 (4) 
i : l  

w h e r e  ~i(x,  "r) a r e  l i n e a r l y  independent  c o o r d i n a t e  funct ions  se l ec t ed  a p r i o r i  and ,~i('r) a r e  funct ions  that  
can  be  d e t e r m i n e d  f r o m  the c o r r e s p o n d i n g  s y s t e m  of o r d i n a r y  d i f f e r en t i a l  equat ions .  

L i m i t i n g  o u r s e l v e s  to one t e r m  of the s u m  in Eq. (4), we w r i t e  the f i r s t  a p p r o x i m a t i o n  of the p r o b l e m  
in the  f o r m  of the  fo l lowing power  function: 

5(x '  T) ---- ~-(z~) 6 ( T ) ~ l n - I I - - ~ ,  5x(G ]'~' (5) 

w h e r e  n has  not ye t  been  defined.  

It  i s  e a s y  to v e r i f y  tha t  Eq. (5) s a t i s f i e s  the  b o u n d a r y  condi t ions  in Eq. (3). The  h e a t e d - l a y e r  f unc -  
t ion  5(7) can  be found f r o m  the n o n c o r r e l a t i o n  o r thogona l i t y  condi t ion L(d) of a c e r t a i n  weighted  funct ion ~: 

6 

[ L (5) ~dx := 0. (6) 

If we  a s s u m e  ~ = 1 in Eq. (6), the i n t e g r a l - b a l a n c e  me thod  app l i e s  [5, 6]; [ = e(x) y i e lds  the  Ga l e rk in  
me thod  and ~ = 0(o/05 y ie lds  the  me thod  employed  by Kogan [7]. 

We s e l e c t  the  funct ion  ~ in the f o r m  

&P I--": ' -  x (7) 
= 0~ = 6 ~ 

Substituting Eqs. (5) and (7) into Eq. (6) and integrating, we obtain the following ordinary differential equa- 

tion with respect to 6: 

4n-[-2 d52 , 4 n - - 2  b 5 2 = a n  ~ (8) 
dr 4 n - - 1  q 0 + b z  4 n =  1 

w h e r e  a is  the  coef f ic ien t  of t h e r m a l  conduc t iv i ty  of the  m a t e r i a l .  

Taking into account the initial condition 5(7)[ 7 =0 = 0, we obtain an expression for the heated zone 

in the following form: 

4n-4:-2 1 +  1 - - [  1 ~4~=--I] 
(~) = n 8n - -  3 a t  ~ ] - ~ a /  J' (9) 

where 

bT 

qo 

It  s p e c i a l l y  fo l lows f r o m  Eq. (9) that ,  with q(T) = q0 and q(T) = bT, the hea ted  zone in the body can be 
ca lcu la t ed  f r o m  the c o r r e s p o n d i n g  r e l a t i o n s h i p s  

4n q- 2 az; 

~4n+ 2 
6 (~) = n 8n - -  3 

aT. 

(i0) 

When Eq. (9) [or Eq. (I0)] is substituted into Eq. (5), we obtain an approximation of the temperature 

field with an accuracy to the parameter n. The approximate solution to the problem of heating with a varying 
heat flux can be used to construct practical extrapolation formulas. 

Let temperature measurements be made at the points x i and x2; then, in accordance with Eq. (5), we 

can construct three equations for x = x1, x = x2, and x = x. Joint solution of the system for d(x, ~-) gives the 
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r e l a t i onsh ip  a m o n g  the t e m p e r a t u r e s  at  t hese  points:  

The appl icab i l i ty  l imi t s  for  Eq. (11) with r e s p e c t  to x and r, fo r  a given a c c u r a c y  can be de t e rmined  
f r o m  c o m p a r i s o n  of the p r e c i s e  (1) and a p p r o x i m a t e  (5) so lu t ions  over  the s p a c e - t i m e  range  Z = x / 2  a~-d-~r. 
Since Eq. (5) has  an  a c c u r a c y  to the p a r a m e t e r  n, the "best  ~ value  of  the l a t t e r  m u s t  be r e g a r d e d  as  the 
in t ege r  that  y ie lds  the l eas t  po in t -by -po in t  devia t ion of the a p p r o x i m a t e  solut ion of Eq. (1) f r o m  its exact  
so lut ion ove r  the g r e a t e s t  r a n g e  of  va r i a t i on  in Z. This  r e q u i r e s  that  the p r e c i s e  solut ion d(x, r) and a p -  
p r o x i m a t e  solut ion d(x, r) co inc ide  at  the boundary  of the body. As a resu l t ,  we obtain the fol lowing equa-  
t ion for  de t e rmina t i on  of the power  n: 

8 n - - 3  

4n~-2  [1 ( 1 t 4-~-'] _ cr247 (12) 
8 n - - 3  [ - - \ ~ ]  J (1§  

Fo r  the spec ia l  c a se s  cons ide red  above,  in which heat  f luxes  q(~) = q0 and q(~) = b~- ac t  on the body, 
we obtain power va lues  n of 2.93 and 7.04 r e s p e c t i v e l y ;  rounding  these  off to the i n t ege r s  3 and 7 in t roduces  
no e r r o r .  Ana lys i s  shows that  the r e g i o n  of Z in which the t e m p e r a t u r e  and g rad ien t  va lues  coincide  with 
an  e r r o r  of no m o r e  than 3~ (at the  end of the in terval)  in these  c a s e s  y ie lds  the c o r r e s p o n d i n g  inequal i t ies  

0 ~  Z-~ 0.5, 0~<Z~<0.8. (13) 

With known va lues  for  the coo rd ina t e  x, we d e t e r m i n e  the t ime  a f t e r  which the  app rox ima t ions  d(x, 7) 
and 35 /~x  a r e  sa t i s f ied  with g iven a c c u r a c y  at  the point in ques t ion  and, conve r se ly ,  the r eg ion  [0, x) whe re  
the exact  and a p p r o x i m a t e  va lues  for  the t e m p e r a t u r e  or  g rad ien t  "coincide"  b e c o m e s  known at a given value 
of r. 

As fol lows f r o m  Eq. (12), the value  of n depends on ~ = b~/q0  in the c a s e  q(~) = q0 + bT. This  r e l a t i o n -  
ship is shown in Fig.  1. 

F i g u r e  2 shows the r e l a t i ve  e r r o r  A = [~(x, 7) - ~ ( x ,  T)]/~(x,  7) in the app rox ima t ion  fo rmu la  in Eq. 
(5) as  a funct ion of Z and ~ with n = 7. 

It can  be seen  f r o m  these  g r a p h s  that  the value  of n for  ~ _> 1 can be a s s u m e d  to equal 7, i .e . ,  at  
a c e r t a i n  point in t ime  dur ing  t h e r m a l  evolut ion,  the ini t ia l  level  of the incoming  heat  f lux no longer  a f fec ts  
the  f o r m  of the t e m p e r a t u r e  d i s t r ibu t ion  and we have the c a s e  q(v) = b~, with the a c c u r a c y  e s t i m a t e s  val id 
f o r  it. 

With 0 < ~ _< 1, the va lue  of n is  a l so  7, but, as  can be seen  f r o m  Fig.  2, the exac tnes s  of the a g r e e -  
m e n t  of ~ and ~ d e c r e a s e s  to 5% in this  ca se  fo r  the s a m e  range  of va r i a t ion  in Z (0 _< Z _< 0.8). 

The  ex t rapo la t ion  funct ion  in Eq. (11) thus enables  us to r e c o n s t r u c t  the t e m p e r a t u r e s  in the body f r o m  
the two m e a s u r e d  t e m p e r a t u r e s ;  we need not know the impinging  heat  flux, the r a t e  at  which it changes  with 
t ime,  or  the t h e r m o p h y s i c a l  cons tan t s  of the m a t e r i a l ,  i .e . ,  those  quant i t ies  that  a r e  usua l ly  unknown under  
expe r imen ta l  condit ions.  

A s s u m i n g  x 2 = 2x i in Eq. (11), which can o c c u r  in p rac t i ce ,  we spec i f i ca l ly  find that  the fol lowing 
s imp le  r e l a t ionsh ip  obtains  fo r  ca lcu la t ion  of the t e m p e r a t u r e  at  the boundary  of the body with x = 0: 

! 

We can obtain a l i nea r  ex t rapo la t ion  f o r m u l a  f r o m  Eq. (14) as  a spec ia l  ca se  [1]. Fo r  this  purpose ,  
we m u s t  a s s u m e  n = 1. 

Equat ion (11) r e a d i l y  y ie lds  a r e l a t i onsh ip  fo r  r e c o n s t r u c t i o n  of the t e m p e r a t u r e  g rad ien t  f r o m  the 
t e m p e r a t u r e s  m e a s u r e d  at two points:  

1 n - - I  l 

O ~  .n;~ x [ . x ~ - - x  xi--x ( O z l ~  ] [ 1 1 ~ (15) 
Ox L X~--x  1 x2--x~\~l/  x~--x~ x2--x~ \~1 " 
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Fig. I. Power n as a function of a.  
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Fig. 2. Relative error in approximate solution of Eq. (5) as a function of Z and ~: I) a = 0; 2) 0.5; 3) 2; 

4) 4; 5) 8; 6) i0. 

By maMng simple transformations, the gradient at the boundary of the body can be expressed in terms 

of the surface t e m p e r a t u r e :  

I 

l 

2 - -  '02 C;) X1 4 " 
2 - -  

\ '~1 ] 

(16) 

If we know the coef f ic ien t  of t h e r m a l  conduc t iv i ty  of the m a t e r i a l  k, the t h e r m a l  flux i mp i ng i ng  on 
the body is  

i] 
+ (17) 

In order to determine ~0, ~/ax, and c~0(0 , r) with the requisite accuracy (no more than 5%), it is 

necessary that the appropriate condition from Eq. (13) be satisfied, where x is assumed to equal x 2. 

The inequalities in Eq. (13) define the lower limit of applicability of the extrapolation formulas ob- 

tained. For a linear process, the upper limit is determined by the point at which the surface begins to 

melt. 

The approximate solution given by Eq. (5) enables us to obtain still another extrapolation relationship 

for determination of the temperature at any point x in the region 0 < x < ~-a-r. at the instant r > r. from the 

temperatures measured at the times r I and r2: r 2 > r I > %. Solving the system of three equations in the 

form of Eq. (5) for, e.g., r = r, r = rl, and r = r 2 at x = xt, we obtain the following formula: 

(~, ~) = o (,1, ~) ~ T  / [ + 
�9 ~ ( x .  T2) 

T~- ~q~ (X 1, T1) 

If the r a t i o  r2/r 1 < 3, Eq. (18) can be s impl i f i ed  to 

(x, *) = ~ (xl, r ] /  

l 

_ F-~-I] -~-- 1 - ~ 1 '~ 

~ t + ]  ~ 
1 - -  %%11 ] l '  

(18) 

(19) 
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where 

1. 

2. 
3. 

4. 

5. 
6. 

7. 

8. 
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